Inhibition of odontogenic differentiation of human dental pulp cells by dental resin monomers
نویسندگان
چکیده
BACKGROUND Dental resin monomers that are leached from the resin matrix due to incomplete polymerization can affect the viability and various functions of oral tissues and cells. In this study, the effects of triethylene glycol dimethacrylate (TEGDMA) and 2-hydroxyethyl methacrylate (HEMA) on odontogenic differentiation of human dental pulp cells (HDPCs) were examined. To mimic clinical situations, dental pulp cells were treated with resin monomers for 24 h prior to the analysis of alkaline phosphatase (ALP) activity and mRNA expression of genes related to pulp cell differentiation. To elucidate the underlying signaling pathways, regulation of mitogen-activated protein (MAP) kinases by resin monomers was also investigated. RESULTS The ALP activity of HDPCs was reduced by TEGDMA and HEMA at noncytotoxic concentrations. The mRNA expression of dentin sialophosphoprotein (DSPP), osteocalcin (OCN), and osteopontin (OPN) was also downregulated by resin monomers. However, DSPP expression was not affected by hydrogen peroxide (H2O2). Among the MAP kinases examined, ERK activation (ERK phosphorylation) was not affected by either resin monomers or H2O2, whereas JNK was phosphorylated by TEGDMA and HEMA. Phospho-p38 was upregulated by HEMA, while TEGDMA and H2O2 suppressed p38 phosphorylation. CONCLUSIONS Exposure to TEGDMA and HEMA for a limited period suppresses differentiation of HDPCs via different signaling pathways.
منابع مشابه
Evaluation of the Effect of Platelet-Rich Plasma on Proliferation and Differentiation of Human Dental Pulp Stem Cells with or without Ga-Al-As Laser
Background Recently, the clinical use of low power lasers has increased, and it is said that wound healing is accelerated by their irradiation. The aim of this study was evaluation of the effect of platelet-rich plasma on proliferation and differentiation of human dental pulp stem cells with or without Ga-Al-As laser. Methods: In this experimental study, human lower third molar dental pulp c...
متن کاملCarboxylesterase expression in human dental pulp cells: role in regulation of BisGMA-induced prostanoid production and cytotoxicity.
Biocompatibility of dentin bonding agents (DBA) and composite resin may affect the treatment outcome (e.g., healthy pulp, pulpal inflammation, pulp necrosis) after operative restoration. Bisphenol-glycidyl methacrylate (BisGMA) is one of the major monomers present in DBA and resin. Prior studies focused on salivary esterase for metabolism and degradation of resin monomers clinically. This study...
متن کاملIsolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth
Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...
متن کاملCellular StreSS reaCtionS
et al., 2001). In deep cavities, the concentration of HEMA reaching the pulp would be in the range of 1.5-8 mmol/L, and about 4 mmol/L for TEGDMA (Noda et al., 2002). Inflammatory reactions (toxic reactions) are reported after the insertion of resin-based composites and adhesives in cavities very close to the pulp or when a (micro) perforation of the pulp had occurred. Consistently, the lack of...
متن کاملسلولهای بنیادین پالپ دندانهای شیری انسان، تاریخچه و انواع روشهای استخراج سلول
Background and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to introduce the isolating methods for stem cells from human dental pulp and to determine their mesenchymal nature before differentiation. Material and methods: One of the ...
متن کامل